Rofunc: The Full Process Python Package for Robot Learning from Demonstration and Robot Manipulation#
Repository address: https://github.com/Skylark0924/Rofunc
Documentation: https://rofunc.readthedocs.io/
Rofunc package focuses on the Imitation Learning (IL), Reinforcement Learning (RL) and Learning from Demonstration ( LfD) for (Humanoid) Robot Manipulation. It provides valuable and convenient python functions, including demonstration collection, data pre-processing, LfD algorithms, planning, and control methods. We also provide an Isaac Gym-based robot simulator for evaluation. This package aims to advance the field by building a full-process toolkit and validation platform that simplifies and standardizes the process of demonstration data collection, processing, learning, and its deployment on robots.
1. Installation#
Please refer to Installation for installation.
2. Available functions and future plans#
The available functions and plans can be found as follows.
Note โ : Achieved ๐: Reformatting โ: TODO
Data |
Learning |
P&C |
Tools |
Simulator |
|||||
---|---|---|---|---|---|---|---|---|---|
โ |
|
โ |
โ |
|
โ |
โ |
|||
โ |
โ |
โ |
โ |
โ |
|||||
โ |
โ |
โ |
โ |
|
๐ |
||||
โ |
โ |
โ |
โ |
โ |
|||||
โ |
โ |
โ |
โ |
โ |
|||||
โ |
โ |
โ |
โ |
|
๐ |
||||
โ |
โ |
โ |
|
โ |
|
๐ |
|||
โ |
โ |
๐ |
|
โ |
|
๐ |
|||
โ |
โ |
๐ |
โ |
โ |
|||||
โ |
โ |
|
๐ |
โ |
โ |
||||
โ |
|
โ |
๐ |
โ |
|||||
|
โ |
|
โ |
๐ |
โ |
||||
โ |
|
๐ |
๐ |
โ |
|||||
|
โ |
|
โ |
โ |
|||||
|
โ |
|
โ |
โ |
|||||
|
โ |
||||||||
โ |
|||||||||
โ |
|||||||||
โ |
|||||||||
โ |
|||||||||
|
โ |
||||||||
|
โ |
||||||||
โ |
|||||||||
|
โ |
||||||||
โ |
|||||||||
โ |
|||||||||
|
โ |
3. Citation#
If you use rofunc in a scientific publication, we would appreciate citations to the following paper:
@software{liu2023rofunc,ย
title = {Rofunc: The Full Process Python Package for Robot Learning from Demonstration and Robot Manipulation},
author = {Liu, Junjia and Dong, Zhipeng and Li, Chenzui and Li, Zhihao and Yu, Minghao and Delehelle, Donatien and Chen, Fei},
year = {2023},
publisher = {Zenodo},
doi = {10.5281/zenodo.10016946},
url = {https://doi.org/10.5281/zenodo.10016946},
dimensions = {true},
google_scholar_id = {0EnyYjriUFMC},
}
Warning
If our code is found to be used in a published paper without proper citation, we reserve the right to address this issue formally by contacting the editor to report potential academic misconduct!ๅฆๆๆไปฌ็ไปฃ็ ่ขซๅ็ฐ็จไบๅทฒๅ่กจ็่ฎบๆ่ๆฒกๆ่ขซๆฐๅฝๅผ็จ๏ผๆไปฌไฟ็้่ฟๆญฃๅผ่็ณป็ผ่พๆฅๅๆฝๅจๅญฆๆฏไธ็ซฏ่กไธบ็ๆๅฉใ
5. The Team#
Rofunc is developed and maintained by the CLOVER Lab (Collaborative and Versatile Robots Laboratory), CUHK.